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Abstract
A few quasi-exactly solvable models are studied within the quantum Hamilton–
Jacobi formalism. By assuming a simple singularity structure of the quantum
momentum function, we show that the exact quantization condition leads to
the condition for quasi-exact solvability.

PACS numbers: 03.65.Ca, 03.65.Fd

1. Introduction

This paper reports an investigation of quasi-exactly solvable (QES) models within the quantum
Hamilton–Jacobi (QHJ) formalism. One of the earliest investigations on QES models was
done by Singh et al [1]. The QES models have been studied extensively, and for a general
review and references we refer the reader to the book by Ushveridze [2]. In the recent years,
a lot of interesting work has been done on QES potential models [3–13]. A complete list of
canonical forms for the QES models has been obtained in [3, 4] and QES periodic potentials
have been studied in [7–9]. The QES models have a characteristic property that, when the
potential parameters satisfy a specified condition, analytic expressions for a few energy levels
and their corresponding eigenfunctions can be obtained exactly. This condition between the
parameters of the potential will be referred to as the quasi-exactly solvability condition.

A well-known example of a QES model is the sextic oscillator in one dimension,
corresponding to the potential V (x) = αx2 + βx4 + γ x6. The condition of quasi-exactly
solvability is found to be 1√

γ

[
β2

4γ
− α

] = 3 + 2n, where n is a non-negative integer which is
related to the number of levels for which exact energy eigenfunctions and eigenvalues can
be computed. A number of other QES models have been constructed and studied within
the algebraic and group theoretical approach. Interesting connections have been established
between the sextic oscillator and second-order linear differential equations within a new
approach to second-order linear differential equations [13].
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In this paper we study the sextic oscillator and a few other QES models in one dimension.
In each of these cases the condition of quasi-exactly solvability is derived within the QHJ
approach. The next section contains an overview of the QHJ formalism and how it is used
in the present paper to study the QES models. In the following four sections we investigate
the sextic oscillator, the sextic oscillator with a centrifugal barrier, a hyperbolic potential and
a circular potential. The last section contains our conclusions about exact solvability and
quasi-exactly solvability.

2. Quantum Hamilton–Jacobi formalism

The QHJ formalism was initiated by Leacock and Padgett [14, 15] and was successfully
applied to several exactly solvable models (ESM) in one dimension in quantum mechanics by
Bhalla et al [16–18]. Our discussions in this paper will be limited to the QES problems in one
dimension only. The Schrödinger equation is

− h̄2

2m

d2

dx2
ψ + V (x)ψ = Eψ. (1)

On substituting ψ = exp(iS/h̄) in (1) we obtain the following equation for S:(
dS

dx

)2

− ih̄

(
d2S

dx2

)
= 2m[E − V (x)]. (2)

We define p(x) = dS
dx

which satisfies the Riccati equation

p2(x) − ih̄
d

dx
p(x) = 2m[E − V (x)]. (3)

In the limit h̄ → 0, (2) becomes the classical Hamilton–Jacobi equation and p(x) → pcl the
classical momentum, which is

pcl =
√

2m[E − V (x)]. (4)

Therefore, (2) and (3) will be referred to as QHJ equations, p(x) will be called the quantum
momentum function (QMF) and S will be the quantum action. In terms of the eigenfunction
ψ of the energy, the QMF is given by

p(x) = −ih̄
1

ψ

dψ

dx
. (5)

An important step in the QHJ formalism is to regard x as a complex variable and extend
the definition of p(x) to the complex plane. From (5) it is obvious that the zeros of the
wavefunction correspond to the poles of the QMF. It is known that the bound state solutions
of (1) corresponding to the nth level have n real zeros, correspondingly the QMF has n poles
on the real line. From (3) it can be seen that if x is a point at which V (x) is analytic and p
has a pole, the pole must be of first order and the residue at that pole will be −ih̄. Therefore,
the integral of the QMF taken along the contour C, which encloses these poles, will have the
value nh̄. Thus, we get

1

2π

∮
C

p(x) dx = nh̄ (6)

and this is an exact quantization condition in one dimension [14, 15]. This exact quantization
condition (6) has been used to obtain bound state energy levels without solving for the
eigenfunctions for several ESM [16–18]. For this purpose one needs to know the location
of singularities and their corresponding residues of the QMF in the complex plane. The
QMF has two kinds of singularities, fixed and moving singularities. The fixed singularities
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correspond to the singularities of the potential and will be present in every solution of the
Riccati equation, their location being independent of the initial conditions. The position
of the moving singularities depends on the initial conditions. It is known that for the
solutions of a Riccati equation only poles can appear as moving singularities. Therefore,
if the potential is meromorphic, the solutions will also be meromorphic. Coming back to the
QMF corresponding to the solutions of the Schrödinger equation, in addition to the poles,
corresponding to the n real zeros of the nth excited state, in general there may be other moving
poles. Knowledge about these poles is needed to apply the QHJ method. The residue at
any fixed pole can be computed from (3). This, being a quadratic equation, will lead to two
solutions and, therefore, a boundary condition on the QMF is needed to pick up the physical
solutions. Leacock and Padgett proposed that one should make use of the condition

lim
h̄→0

p(x) → pcl. (7)

From (4) it should be noted that the classical turning points become the branch points of pcl. It
has to be emphasized here that, when x is a complex variable, pcl is a double-valued function.
A full definition of pcl in the complex plane as a function of a complex variable x requires
us to select a particular branch of pcl which is assumed to have a branch cut in the classical
region and a positive value just below the branch cut. Locating the singular points of the QMF
and imposing the boundary conditions discussed above are two crucial but usually difficult
steps in arriving at the correct solutions. In the earlier studies of ESM, it was easy to guess the
singularity structure of the QMF, and it was found that there were no moving poles away from
the real axis. For the QES models studied in this paper, it is very difficult to find the location of
the singularities of the QMF. In order to be able to make some progress, we make a simplifying
assumption about the moving poles and the nature of the singularity at infinity. The details of
moving and possible fixed poles will be given in each case separately as and when we discuss
the model. We now state our main assumption, common to all models studied, i.e., the point at
infinity is an isolated point and that it is a pole of finite order and not an essential singularity.
Under these assumptions we show that imposing the exact quantization condition leads to the
condition of QES in each case.

3. Sextic oscillator

The potential for the sextic oscillator is

V (x) = αx2 + βx4 + γ x6 γ > 0. (8)

From now onwards we set h̄ = 2m = 1. For the nth exited state, QMF has n moving poles
on the real axis and we assume that there are no other moving poles. In order to use the
quantization condition (6), we need to evaluate the integral J (E),

J (E) = 1

2π

∮
C

p(x) dx (9)

along the contour C. As a first step, it is convenient to deform the contour C to a large circular
contour �, with the centre at the origin and large enough to enclose all the singularities of the
QMF in the finite complex plane. This is possible because the point at infinity is assumed to
be an isolated singularity and the value of the integral remains unchanged. Hence

J (E) = 1

2π

∮
�

p(x) dx. (10)

In order to evaluate the integral along the large circle �, we apply an inversion mapping
x → y = 1

x
. Under this mapping the circular contour � gets mapped to another circular
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contour γ in the y-plane. The only singular point inside this contour is the point y = 0, which
is the image of the point at infinity in the x-plane. Thus, we obtain from (10)

J (E) = 1

2π

∮
γ

p̃(y)
1

y2
dy. (11)

To evaluate the integral in (11) a Laurent expansion of p̃(y) is made:

p̃(y) =
3∑

n=1

bn

yn
+

∞∑
n=1

any
n. (12)

Substituting this expansion in (11) and integrating term by term, we get

J (E) = ia1. (13)

It only remains to compute the coefficient a1 of the Laurent expansion given in (12). To do
this we start from the QHJ equation

p̃2(y) + iy2 d

dy
p̃(y) = E − α

y2
− β

y4
− γ

y6
. (14)

Substituting the Laurent expansion and equating the coefficients of different powers of y in
both sides of equation (14), we successively get the following equations:

b2
3 = −γ (15)

b2 = 0 (16)

2b1b3 = −β (17)

b2
1 + b3(2a1 − 3i) = −α. (18)

It is important to know that we would get two solutions for b1 corresponding to the two
solutions of b3 = ±i

√
γ . This happens due to the fact that the QHJ is quadratic in the QMF.

Thus one needs a boundary condition to pick the correct solution. We propose to use the
square integrability of the wavefunction instead of the original boundary condition, explained
in the introduction, which was proposed by Leacock and Padgett. This is because the original
boundary condition is difficult to implement in the present case due to the presence of six
branch points in the pcl. In order to find the restrictions coming from the square integrability,
we compute the wavefunction

ψ(x) = exp

(∫
ip(x) dx

)
(19)

for large x as follows. The most important term in the Laurent expansion (12) for small y ≈ 0,
corresponding to large x, is

p̃(y) ≈ b3

y3
(20)

and the wavefunction for large x becomes

ψ(x) ≈ exp

(
i
b3x

4

4

)
dx. (21)

Out of the two solutions, b3 = ±i
√

γ , ψ is square integrable only for b3 = i
√

γ . Using this
value of b3 and calculating J (E) from (13), the quantization condition gives

1√
γ

(
β2

4γ
− α

)
= 3 + 2n. (22)

In order to compare the result in (22) with the known condition [2], we write

γ = a2 β = 2ab. (23)

Thus, we get α = b2 − a(3 + 2n) which agrees with the known result.
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4. Sextic oscillator with the centrifugal barrier

This kind of model was first studied by Houtot [19]. The potential we discuss here is

V (x) = 4

(
S − 1

4

) (
S − 3

4

)
1

x2
+

[
b2 − 4a

(
S +

1

2
+ M

)]
x2 + 2abx4 + a2x6 (24)

and the range of S is taken to be 4S > 3. We note that the potential goes to ∞ as x → 0 and
x → ∞. Hence, the classical turning points will be on the positive real axis. The physical
motion in both classical and quantum situations will be confined to the positive real axis only.
As has been discussed earlier, there will be n moving poles in the classical region which are
enclosed by the contour C in the quantization condition stated in (6). When we extend the
definition of x, to take all the complex values, we expect n additional moving poles on the
negative real axis. These come from the symmetry of the potential under the transformation
x → −x. Just as in the quantization condition (6), we have

1

2π

∮
C1

p(x) dx = n (25)

where C1 is the contour which encloses the n additional moving poles on the negative real
axis. The QHJ equation for this potential is

p2(x) − i
d

dx
p(x) = E − 4

(
S − 1

4

) (
S − 3

4

)
1

x2

−
[
b2 − 4a

(
S +

1

2
+ M

)]
x2 − 2abx4 − a2x6. (26)

We observe that in addition to the 2n moving poles, x = 0 is a fixed pole. In this case we
assume that there are no other singularities in the finite complex plane. As in the case of the
sextic oscillator, in order to evaluate J (E) in (9), we deform the contour C to a large circular
contour �, which will enclose the 2n moving poles and the fixed pole at x = 0. Therefore, we
have ∮

�

p(x) dx =
∮

γ0

p(x) dx +
∮

C

p(x) dx +
∮

C1

p(x) dx (27)

where γ0 is the contour enclosing only the fixed pole at x = 0. Expanding p(x) in the Laurent
series, in powers of x

p(x) = b1

x
+

∞∑
n=0

anx
n (28)

we get

1

2π

∮
γ0

p(x) dx = ib1. (29)

We fix b1 by substituting the Laurent series in (26). Thus, we obtain

b1 = i

2
[4S − 3] b1 = − i

2
[4S − 1]. (30)

The choice for the value of b1 consistent with square integrability in the specified range is

b1 = − i

2
[4S − 1]. (31)

Thus, (27) becomes

1

2π

∮
�

p(x) dx = ib1 + 2n. (32)
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The integral along � is computed by changing the variable from x → y = 1
x

and proceeding
in the same way as was done for the sextic oscillator. From (31) we then obtain

M = n (33)

which is the quasi-exact solvability condition for the sextic oscillator with the centrifugal
barrier.

5. Circular potential

The potential for this model is

V (x) = A

sin2 x
+

B

cos2 x
− C sin2 x + D sin4 x (34)

where

A = 4
(
S1 − 1

4

) (
S1 − 3

4

)
B = 4

(
S2 − 1

4

) (
S2 − 3

4

)
(35)

C = q2
1 + 4q1(S1 + S2 + M) D = q2

1 (36)

and the ranges of S1 and S2 are 2S1 > 1 and 2S2 > 1, respectively. The QHJ equation is

p2(x) − i
d

dx
p(x) = E − A

sin2 x
− B

cos2 x
+ C sin2 x − D sin4 x (37)

and the quantization condition is

1

2π

∮
C

p(x) dx = n. (38)

Defining sin2 x = t , the QHJ equation becomes

p̃2(t) − 2i
√

t (1 − t)
d

dt
p̃(t) = E − A

t
− B

1 − t
+ Ct − Dt2 (39)

where p̃(t) ≡ p(x). Defining q by p̃ = √
t (1 − t)q we obtain the QHJ equation in t variable

as follows:

q2 − 2i
d

dt
q − i(1 − 2t)q

t (1 − t)
= E

t(1 − t)
− A

t2(1 − t)
− B

t(1 − t)2
+

C

1 − t
− Dt

1 − t
. (40)

The quantization condition (38) becomes

1

2π

∮
C

q(t)

2
dt = n. (41)

We observe that QMF has fixed poles at t = 1, 0 and proceeding in a way similar to section 4,
we obtain the quasi-exact solvability condition as

M = n. (42)

6. Hyperbolic potential

The QHJ equation for this potential is

p2(x) − i
d

dx
p(x) = E +

A

cosh2 x
− B

sinh2 x
+ C cosh2 x − D cosh4 x (43)

where

A = 4
(
S1 − 1

4

) (
S1 − 3

4

)
B = 4

(
S2 − 1

4

) (
S2 − 3

4

)
(44)
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C = q2
1 + 4q1(S1 + S2 + M) D = q2

1 (45)

and the ranges of S1 and S2 are 2S1 > 1 and 2S2 > 1, respectively. A change of variable from
x → t = cosh x changes p(x) → p̃(t) = p(cosh−1 x), then defining

p̃(t) =
√

t2 − 1q(t). (46)

The QHJ equation becomes

q2 − i
d

dt
q − itq

t2 − 1
= E

t2 − 1
+

A

t2(t2 − 1)
− B

(t2 − 1)2
+

Ct2

t2 − 1
− q2

1 t
4

t2 − 1
. (47)

The quantization condition is

1

2π

∮
q(t) dt = n. (48)

We expect 2n moving poles on the entire real line as in section 4, and fixed poles at t = 0,±1.
These poles together with a pole of finite order at infinity lead to the condition

M = n (49)

which agrees with the known condition of QES of this model.

7. Conclusions

In the limit h̄ → 0 the QMF of the sextic oscillator goes to pcl which has six branch points.
Therefore, in general we expect a complicated singularity structure for the sextic and also for
other models studied in this paper. In the analysis presented in the previous sections it was
assumed that there are no moving poles off the real axis. A closer look at the derivation of
the condition of quasi-exact solvability shows that the assumption, ‘no moving poles of the
QMF off the real axis’ can be replaced by a weaker assumption, ‘the QMF has a finite number
of moving poles in the complex plane’, without altering any of the results. In fact, it can
be seen from explicit solutions in [2, 4] that the algebraic eigenfunctions do have complex
zeros. For all the models that have been studied here, the algebraic part of the spectrum and
eigenfunctions are well known and in all cases the QMF has a pole at infinity. Thus, we
conclude that, for the class of potentials studied here, QES models are the only models for
which the QMF has a pole at infinity and a finite number of moving poles in the complex plane.
For each model the known algebraic eigenfunctions correspond to the QMF having singularity
structure as postulated. For completeness it must be mentioned that the assumption of a finite
number of poles is not independent of the assumption that the point at infinity is a pole. For
a large class of potentials which are analytic everywhere, except for isolated singularities,
the moving singularities of solutions of the QHJ can only be poles. An infinite number of
such poles will, therefore, have an accumulation point at infinity and making it z = ∞, a
non-isolated essential singular point.

The parameter n that appears in the exact quantization condition is related to the number
of moving poles in the QMF and has different roles to play for the ESM and QES models.
In the ESM each value of n corresponds to an energy level and an eigenfunction with n real
zeros. In the case of the QES models, n appears as a parameter in the expression for the
potential and picks out a particular QES model within a family of potentials; varying n gives
rise to a different potential within the family. Recalling that n also determines the number of
moving poles of the QMF, it appears reasonable to expect that all the algebraic eigenfunctions
for given QES models (fixed n) will have the same number of complex zeros determined by n.
An explicit check reveals that this expectation is true for the sextic oscillator. A preliminary
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study reveals that the poles of the QMF for QES periodic potentials have a richer structure. A
detailed study of the location of the poles of the QMF in different QES models will be reported
elsewhere.
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